Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644468

RESUMO

Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.

2.
Cancer Lett ; 587: 216696, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38331089

RESUMO

Lactate dehydrogenase A (LDHA) serves as a key regulator of the Warburg Effect by catalyzing the conversion of pyruvate to lactate in the final step of glycolysis. Both the expression level and enzyme activity of LDHA are upregulated in cancers, however, the underlying mechanism remains incompletely understood. Here, we show that LDHA is post-translationally palmitoylated by ZDHHC9 at cysteine 163, which promotes its enzyme activity, lactate production, and reduces reactive oxygen species (ROS) generation. Replacement of endogenous LDHA with a palmitoylation-deficient mutant leads to reduced pancreatic cancer cell proliferation, increased T-cell infiltration, and limited tumor growth; it also affects pancreatic cancer cell response to chemotherapy. Moreover, LDHA palmitoylation is upregulated in gemcitabine resistant pancreatic cancer cells. Clinically, ZDHHC9 is upregulated in pancreatic cancer and correlated with poor prognoses for patients. Overall, our findings identify ZDHHC9-mediated palmitoylation as a positive regulator of LDHA, with potentially significant implications for cancer etiology and targeted therapy for pancreatic cancer.


Assuntos
L-Lactato Desidrogenase , Neoplasias Pancreáticas , Humanos , L-Lactato Desidrogenase/genética , Lipoilação , Linhagem Celular Tumoral , Lactato Desidrogenase 5/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Glicólise , Proliferação de Células , Lactatos
3.
Mol Cell ; 83(24): 4570-4585.e7, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38092000

RESUMO

The nucleotide-binding domain (NBD), leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a critical mediator of the innate immune response. How NLRP3 responds to stimuli and initiates the assembly of the NLRP3 inflammasome is not fully understood. Here, we found that a cellular metabolite, palmitate, facilitates NLRP3 activation by enhancing its S-palmitoylation, in synergy with lipopolysaccharide stimulation. NLRP3 is post-translationally palmitoylated by zinc-finger and aspartate-histidine-histidine-cysteine 5 (ZDHHC5) at the LRR domain, which promotes NLRP3 inflammasome assembly and activation. Silencing ZDHHC5 blocks NLRP3 oligomerization, NLRP3-NEK7 interaction, and formation of large intracellular ASC aggregates, leading to abrogation of caspase-1 activation, IL-1ß/18 release, and GSDMD cleavage, both in human cells and in mice. ABHD17A depalmitoylates NLRP3, and one human-heritable disease-associated mutation in NLRP3 was found to be associated with defective ABHD17A binding and hyper-palmitoylation. Furthermore, Zdhhc5-/- mice showed defective NLRP3 inflammasome activation in vivo. Taken together, our data reveal an endogenous mechanism of inflammasome assembly and activation and suggest NLRP3 palmitoylation as a potential target for the treatment of NLRP3 inflammasome-driven diseases.


Assuntos
Aciltransferases , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Caspase 1/metabolismo , Histidina/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Lipoilação , Macrófagos/metabolismo , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo
4.
J Agric Food Chem ; 71(31): 11982-11992, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37523321

RESUMO

An integrated purification procedure through the LC-MS/MS-based molecular networking strategy combined with bioactive evaluation was first ushered for discovering bioactive ophiobolins from Bipolaris eleusines. Ophiobolins were mainly dispersed in five clusters, which were classified based on different ring systems and functional groups. Nine undescribed ophiobolins (1-6 and 9-11) and an undescribed natural product (8) along with two known analogs (7 and 12) were isolated in target. The undescribed structures were characterized by HR-ESI-MS, NMR spectra, and X-ray diffraction experiments. Compounds 3-12 exhibited strong phytotoxic effects on green foxtails by producing visible lesions, and compounds 1-10 and 12 displayed different levels of cytotoxic activities against cancer cell lines B16, Hep G2, and MCF-7, from which the possible structure-activity relationships were then suggested. The results have supported that bioactivity-guided molecular networking is an efficient strategy to expedite the discovery of undescribed bioactive natural products.


Assuntos
Sesterterpenos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Sesterterpenos/farmacologia , Sesterterpenos/química , Estrutura Molecular
5.
Front Plant Sci ; 14: 1142212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008457

RESUMO

Endophytic fungi from desert plants belong to a unique microbial community that has been scarcely investigated chemically and could be a new resource for bioactive natural products. In this study, 13 secondary metabolites (1-13) with diverse carbon skeletons, including a novel polyketide (1) with a unique 5,6-dihydro-4H,7H-2,6-methanopyrano[4,3-d][1,3]dioxocin-7-one ring system and three undescribed polyketides (2, 7, and 11), were obtained from the endophytic fungus Neocamarosporium betae isolated from two desert plant species. Different approaches, including HR-ESI-MS, UV spectroscopy, IR spectroscopy, NMR, and CD, were used to determine the planar and absolute configurations of the compounds. The possible biosynthetic pathways were proposed based on the structural characteristics of compounds 1-13. Compounds 1, 3, 4, and 9 exhibited strong cytotoxicity toward HepG2 cells compared with the positive control. Several metabolites (2, 4-5, 7-9, and 11-13) were phytotoxic to foxtail leaves. The results support the hypothesis that endophytic fungi from special environments, such as desert areas, produce novel bioactive secondary metabolites.

6.
Mycology ; 14(4): 371-380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187881

RESUMO

Almost all orchids rely on mycorrhizal fungus to support their seed germination. To date, the effect of active components in mycorrhizal fungus on orchid seed germination largely remains unknown. In this study, we aimed to investigate the impact of active components found in mycorrhizal fungus on orchid seed germination. Specifically, we focused on a terrestrial orchid Gymnadenia conopsea and its host-specific seed germination supporting fungus Ceratobasidium GS2. In total, several steroids (1-7) were isolated from this fungus. Notably, compounds 1, 2, 4, and 5 exhibited significant enhancements in protocorm volume. Moreover, compounds 1-6 demonstrated strong promotion of protocorm differentiation. These findings suggest that steroids may play a crucial role in the symbiotic germination of G. conopsea seeds. Future studies should continue to explore the specific mechanisms through which these steroids exert their effects, contributing to our understanding of orchid biology and mycorrhizal interaction.

7.
Front Microbiol ; 13: 1037292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466680

RESUMO

Five furanoids including a new analog (S)-1,4-di(furan-2-yl)-2-hydroxybutane-1,4-dione (1) together with four known ones, rhizosolaniol (2), 5-hydroxymethylfurfural (3), 2-furoic acid (4) and (2-furyl) oxoacetamide (5), were isolated from the fungal strain Ceratobasidium sp. (GS2) inducing seed germination of the endangered medicinal plant Gymnadenia conopsea of Orchidaceae. The structure of new furanoid 1 was determined mainly based on HR-ESI-MS and NMR spectral data. Modified Mosher's reactions were used to establish the stereochemistry of the hydroxyl group in 1, which was not stable in Mosher's reagents and transformed into four analogs 6-9. These degraded products (6-9) were elucidated based on UPLC-Q-TOF-MS/MS analysis, and compound 8 was further isolated from the degraded mixture and its structure was characterized through NMR experiments. Therefore, the absolute configuration of compound 1 was determined by electronic circular dichroism combined with quantum-chemical calculations adopting time-dependent density functional theory. Compounds (1-5), and 8 showed weak antioxidant activities, and compounds (2-4) displayed phytotoxicity on punctured detached green foxtail leaves. In addition, compounds 3 and 4 strongly showed inhibition activities on the seed germination of G. conopsea. This was the first chemical investigation of the symbiotic fungus of G. conopsea.

8.
Front Microbiol ; 13: 961172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875551

RESUMO

Dark septate endophytes (DSE) are a group of facultative biotrophic root-colonizing fungi that live within a plant for a part of their life cycle without causing any apparent, overt negative effects. These fungi have been found in >600 different plant species, including orchids. Although the precise ecological functions of dark septate fungal endophytes are not yet well understood, there is increasing evidence that they enhance host growth and nutrient acquisition, and improve the plant's ability to tolerate biotic and abiotic stresses. In this research, we tested the effects of a DSE isolated from the roots of the epiphytic orchid Coelogyne viscosa on the growth and drought tolerance of orchid seedlings. Our results showed that addition of DSE inoculum significantly enhanced biomass of seedlings and increased the activities of drought resistance related enzymes and the accumulation of osmoregulatory substances. These results suggest that DSE can fulfill important ecological functions in stressful environments and potentially play an important role in the life cycle of epiphytic orchids.

9.
Phytochemistry ; 201: 113264, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35679970

RESUMO

Ten diphenyl ethers (DPEs), including nine undescribed analogs named betaethrins A-I, were isolated from the desert plant endophytic fungus Phoma betae A.B. Frank (Didymellaceae). Their structures were determined mainly by NMR, HR-ESI-MS spectral and X-ray diffraction experiments. Betaethrins D-I possessed different fatty acid chains connected with the B-ring, which was the first report in all DPEs. The shielding effect of the B-ring on H-6 (A-ring) in methyl barceloneate, betaethrin A and betaethrins D-F (asterric acid analogs) was first observed and analyzed, which could differentiate the 1H-NMR chemical shift values of H-4/H-6 without the assistance of 3-OH. An empirical rule was then suggested: the steric hindrance between the A- and B-rings in asterric acid analogs might prevent these two aromatic rings from rotating freely, which led to the 1H-NMR chemical shift value of H-6 being in the high field zone due to the shielding effect of the B-ring on H-6. Based on the empirical rule, the chemical shift values of the A-ring in methyl barceloneate were revised. The possible biosynthesis of these isolates was postulated. Betaethrin H showed moderate cytotoxicity against MCF-7 and HepG2 cancer cell lines. Betaethrins A-F, H and I displayed strong antioxidant activities. These results further implied that endophytic fungi from unique environments, such as desert plants, with few chemical studies are an important resource of undescribed and bioactive metabolites.


Assuntos
Ascomicetos , Endófitos , Ascomicetos/química , Endófitos/química , Éteres Fenílicos/química , Phoma , Plantas
10.
Plant Divers ; 43(5): 343-349, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34816060

RESUMO

We review achievements in the conservation of orchid diversity in China over the last 21 years. We provide updated information on orchid biodiversity and suggestions for orchid conservation in China. We outline national policies of biodiversity conservation, especially of orchid conservation, which provide general guidelines for orchid conservation in China. There are now approximately 1708 known species of Orchidaceae in 181 genera in China, including five new genera and 365 new species described over the last 21 years. The assessment of risk of extinction of all 1502 known native orchid species in China in 2013 indicated that 653 species were identified as threatened, 132 species were treated as data-deficient, and four species endemic to China were classified as extinct. Approximately 1100 species (ca. 65%) are protected in national nature reserves, and another ~66 species in provincial nature reserves. About 800 native orchid species have living collections in major botanical gardens. The pollination biology of 74 native orchid species and the genetic diversity and spatial genetic structure of 29 orchid species have been investigated at a local scale and/or across species distributions. The mycorrhizal fungal community composition has been investigated in many genera, such as Bletilla, Coelogyne, Cymbidium, Cypripedium, and Dendrobium. Approximately 292 species will be included in the list of national key protected wild plants this year. Two major tasks for near future include in situ conservation and monitoring population dynamics of endangered species.

11.
Front Microbiol ; 12: 787820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992588

RESUMO

Fungi employ extracellular enzymes to initiate the degradation of organic macromolecules into smaller units and to acquire the nutrients for their growth. As such, these enzymes represent important functional components in terrestrial ecosystems. While it is well-known that the regulation and efficiency of extracellular enzymes to degrade organic macromolecules and nutrient-acquisition patterns strongly differ between major fungal groups, less is known about variation in enzymatic activity and carbon/nitrogen preference in mycorrhizal fungi. In this research, we investigated variation in extracellular enzyme activities and carbon/nitrogen preferences in orchid mycorrhizal fungi (OMF). Previous research has shown that the mycorrhizal fungi associating with terrestrial orchids often differ from those associating with epiphytic orchids, but whether extracellular enzyme activities and carbon/nitrogen preference differ between growth forms remains largely unknown. To fill this gap, we compared the activities of five extracellular enzymes [cellulase, xylanase, lignin peroxidase, laccase, and superoxide dismutase (SOD)] between fungi isolated from epiphytic and terrestrial orchids. In total, 24 fungal strains belonging to Tulasnellaceae were investigated. Cellulase and xylanase activities were significantly higher in fungi isolated from terrestrial orchids (0.050 ± 0.006 U/ml and 0.531 ± 0.071 U/ml, respectively) than those from epiphytic orchids (0.043 ± 0.003 U/ml and 0.295 ± 0.067 U/ml, respectively), while SOD activity was significantly higher in OMF from epiphytic orchids (5.663 ± 0.164 U/ml) than those from terrestrial orchids (3.780 ± 0.180 U/ml). Carboxymethyl cellulose was more efficiently used by fungi from terrestrial orchids, while starch and arginine were more suitable for fungi from epiphytic orchids. Overall, the results of this study show that extracellular enzyme activities and to a lesser extent carbon/nitrogen preferences differ between fungi isolated from terrestrial and epiphytic orchids and may indicate functional differentiation and ecological adaptation of OMF to local growth conditions.

12.
Int J Med Mushrooms ; 22(5): 479-488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749102

RESUMO

Polyporus umbellatus is a traditional Chinese medicinal mushroom. The growth of P. umbellatus sclerotia requires the rhizomorphs of Armillaria spp. to supply nutrition. Whether the main components (MC) of sclerotia of P. umbellatus are related to the phylogeny of Armillaria associates or other environmental factors is largely unknown. In this study, we collected 17 sclerotia and soil samples from northeast to southwest China. In total, 17 Armillaria associates were isolated, and sclerotial MC contents and soil characteristics (total N, P, K, and organic matter) were determined. The analysis revealed that the MC content of P. umbellatus did not resemble a Brownian motion process in phylogeny of Armillaria associates, but were significantly influenced by the total N content of the soil. These results provide clear evidence that sclerotia of P. umbellatus associating with phylogenetic related Armillaria associates possess differing MC content. The mechanisms of nutrient exchange in P. umbellatus-Armillaria associations now require further elucidation.


Assuntos
Agaricales , Armillaria , Polyporus/metabolismo , Simbiose , Agaricales/genética , Agaricales/metabolismo , Armillaria/genética , Armillaria/metabolismo , China , Ergosterol/análise , Ergosterol/metabolismo , Genes Fúngicos , Filogenia , Polissacarídeos/análise , Polissacarídeos/metabolismo , Solo/química , Microbiologia do Solo
13.
Mycorrhiza ; 30(2-3): 221-228, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32146514

RESUMO

Interactions with mycorrhizal fungi have been increasingly recognized as one of the most important ecological factors determining the distribution and local abundance of orchids. While some orchid species may interact with a variety of fungal associates, others are more specific in their choice of mycorrhizal partners. Moreover, orchids that co-occur at a given site, often associate with different partners, possibly to avoid competition and to allow stable coexistence. However, whether differences in mycorrhizal partners directly affect seed germination and subsequent protocorm formation remains largely unknown. In this research, we used in vitro germination experiments to investigate to what extent seed germination and protocorm formation of Gymnadenia conopsea was affected by the origin and identity of fungal associates. Fungi were isolated from G. conopsea and three other co-occurring orchid species (Dactylorhiza viridis (Coeloglossum viride), Herminium monorchis, and Platanthera chlorantha). In total, eight fungal associates, belonging to Tulasnellaceae, Ceratobasidiaceae, and Serendipitaceae, were successfully isolated and cultured. While all eight fungal strains were able to promote early germination of G. conopsea seeds, only fungal strain GS2, a member of the Ceratobasidiaceae isolated from G. conopsea itself, was able to promote protocorm formation and subsequent growth to a seedling. Two other fungal strains isolated from G. conopsea only supported seed germination until the protocorm formation stage. The other five fungal strains isolated from the co-occurring orchid species did not support seed germination beyond the protocorm stage. We conclude that, although G. conopsea is considered a mycorrhizal generalist that associates with a wide range of fungi during its adult life, it requires specific fungi to promote protocorm formation and growth to a seedling.


Assuntos
Basidiomycota , Micorrizas , Orchidaceae , Germinação , Sementes , Simbiose
14.
PhytoKeys ; 138: 113-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31988606

RESUMO

Myanmar is known for its high species richness of genus Gastrochilus; however, most of them lack proper information for taxonomic revision. During four years of field investigation in Myanmar, two new distributional records were encountered, namely, G. arunachalensis and G. corymbosus and one species, i.e. G. pechei was rediscovered after its original description. The three species were not easy to interpret from the available original descriptions and types due to severely shrunk or poorly preserved specimens. Therefore, we hereby present more detailed illustrations and updated descriptions for these species, based on freshly collected materials.

15.
Sci China Life Sci ; 62(6): 838-847, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30810964

RESUMO

Mycorrhizal fungi play an important role in the germination and growth of orchids essentially influencing their survival, abundance, and spatial distribution. In this study, we investigated the composition of the mycorrhizal fungal community in seven terrestrial orchid species inhabiting Song Mountain, Beijing, China, using Illumina MiSeq high-throughput sequencing. The mycorrhizal communities in the seven orchids were mainly composed of members of the Ceratobasidiaceae, Sebacinales, and Tulasnellaceae, while a number of ectomycorrhizal fungi belonging to the Russulaceae, Tricholomataceae, Thelephoraceae, and Cortinariaceae were occasionally observed. However, the dominant fungal associates and mycorrhizal community differed significantly among the orchid species as well as subhabitats. These findings confirm the previous observation that sympatric orchid species show different preferences for mycorrhizal fungi, which may drive niche partitioning and contribute to their cooccurrence.


Assuntos
Micobioma/genética , Micorrizas/classificação , Micorrizas/genética , Orchidaceae/microbiologia , Basidiomycota/genética , Pequim , Biodiversidade , DNA Fúngico/análise , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Especificidade da Espécie
16.
J Antibiot (Tokyo) ; 71(6): 613-617, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29540777

RESUMO

Endophytic fungi from desert, arid, and grassland areas are an ecologically important but unique group with poor chemical investigation. During our ongoing study to mine bioactive secondary metabolites from unique fungal environments, a new shunt product spiciferone F (1) including two new analogs spiciferones G (2) and H (3) together with four known ones spiciferone A (4), spiciferol A (5), 6, and 7 were isolated from endophytic fungus Phoma betae inhabiting in plant Kalidium foliatum (Pall.) Moq from Ningxia Province of West China. The planar, relative, and absolute configurations of these new compounds were elucidated by nuclear magnetic resonance, high-resolution electrospray ionization mass spectrometry, and electronic circular dichroism experiments. According to the shunt products, intermediates and analogs isolated from this endophytic fungus, the possible biosynthetic pathway of spiciferones was reconstructed. Compounds 1-7 were evaluated cytotoxic activities against three cancer cell lines HCT 116, HeLa, and MCF7, and only did 1 display strong biological effect against MCF7 with a half-maximal inhibitory concentration value at 7.73 ± 0.11 µM compared with the cis-platinum (14.32 ± 1.01 µM).


Assuntos
Ascomicetos/química , Endófitos/química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Plantas/microbiologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , China , Dicroísmo Circular , Clima Desértico , Compostos Heterocíclicos com 2 Anéis/isolamento & purificação , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
17.
Sci Rep ; 7(1): 4226, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28652610

RESUMO

It has been well established that some Armillaria species are symbionts of Polyporus umbellatus, However, little is known about the evolutionary history of P. umbellatus-Armillaria associations. In this research, we used an analysis based on the strength of the phylogenetic signal to investigate P. umbellatus-Armillaria associations in 57 sclerotial samples across 11 provinces of China. We isolated Armillaria strains from the invasion cavity inside the sclerotia of P. umbellatus and then phylogenetically analyzed these Armillaria isolates. We also tested the effect of P. umbellatus and Armillaria phylogenies on the P. umbellatus-Armillaria associations. We isolated forty-seven Armillaria strains from 26 P. umbellatus sclerotial samples. All Armillaria isolates were classified into the 5 phylogenetic lineages found in China except for one singleton. Among the 5 phylogenetic lineages, one lineage (lineage 8) was recognized by delimitation of an uncertain phylogenetic lineage in previous study. Results of simple Mantel test implied that phylogenetically related P. umbellatus populations tend to interact with phylogenetically related Armillaria species. Phylogenetic network analyses revealed that the interaction between P. umbellatus and Armillaria is significantly influenced by the phylogenetic relationships between the Armillaria species.


Assuntos
Armillaria/fisiologia , Micélio/fisiologia , Polyporus/fisiologia , Simbiose , Armillaria/classificação , Armillaria/genética , China , Genótipo , Geografia , Filogenia , Polyporus/classificação , Polyporus/genética , Especificidade da Espécie
18.
Sci China Life Sci ; 60(5): 536-544, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28299575

RESUMO

Plant phylogeny constrains orchid mycorrhizal (OrM) fungal community composition in some orchids. Here, we investigated the structures of the OrM fungal communities of eight Dendrobium species in one niche to determine whether similarities in the OrM fungal communities correlated with the phylogeny of the host plants and whether the Dendrobium-OrM fungal interactions are phylogenetically conserved. A phylogeny based on DNA data was constructed for the eight coexisting Dendrobium species, and the OrM fungal communities were characterized by their roots. There were 31 different fungal lineages associated with the eight Dendrobium species. In total, 82.98% of the identified associations belonging to Tulasnellaceae, and a smaller proportion involved members of the unknown Basidiomycota (9.67%). Community analyses revealed that phylogenetically related Dendrobium tended to interact with a similar set of Tulasnellaceae fungi. The interactions between Dendrobium and Tulasnellaceae fungi were significantly influenced by the phylogenetic relationships among the Dendrobium species. Our results provide evidence that the mycorrhizal specificity in the eight coexisting Dendrobium species was phylogenetically conserved.


Assuntos
Dendrobium/microbiologia , Micorrizas/fisiologia , Filogenia , Simbiose , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/fisiologia , Dendrobium/classificação , Dendrobium/genética , Especificidade de Hospedeiro/genética , Micorrizas/classificação , Micorrizas/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Análise de Sequência de DNA/métodos , Especificidade da Espécie
19.
Mycorrhiza ; 25(4): 289-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25319065

RESUMO

Some orchid species are present as epiphytes and lithophytes in the same habitat, but little is known about the differences of their mycorrhizal fungal communities. We used Coelogyne viscosa, which occurs both as an epiphyte and a lithophyte, as a study system to investigate orchid mycorrhizal fungal communities in lithophytes and epiphytes in Xishuangbanna National Nature Reserve (Yunnan Province, China). Twenty-three fungal operational taxonomic units (OTUs) from 18 sampling sites were identified. Results indicated that mycorrhizal fungal community composition was different between epi- and lithophytes. When we analyzed the Tulasnellaceae and Sebacinales communities separately, we found that the Sebacinales fungal communities were significantly different in the two growth habitats, but the Tulasnellaceae fungal communities were not. Our results provide evidence for distinct orchid mycorrhiza fungal communities depending on the growth habitat of the orchid. Consistent with some recent investigations of mycorrhizal fungus community composition, this study suggests that for one orchid, growth habitat affects mycorrhizal symbioses.


Assuntos
Biodiversidade , Micorrizas/classificação , Micorrizas/fisiologia , Orchidaceae/microbiologia , Ecossistema , Genes Fúngicos , Fenótipo , Filogenia , Simbiose
20.
PLoS One ; 8(3): e58807, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554929

RESUMO

BACKGROUND: Polyporus umbellatus is an important medicinal fungus distributed throughout most area of China. Its wide distribution may have resulted in substantial intraspecific genetic diversity for the fungus, potentially creating variation in its medical value. To date, we know little about the intraspecific genetic diversity of P. umbellatus. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this research was to assess genetic differences of P. umbellatus from geographically diverse regions of China based on nrDNA ITS and 28S rRNA (LSU, large subunit) sequences. Significant sequence variations in the ITS and LSU sequences were detected. All sclerotial samples were clustered into four clades based on phylogenetic analysis of ITS, LSU and a combined data set of both regions. Heterogeneity of ITS and LSU sequences was detected in 5 and 7 samples respectively. All clone sequences clustered into the same clade except for one LSU clone sequences (from Henan province) which clustered into two clades (Clade I and Clade II). Significant genetic divergence in P. umbellatus was observed and the genetic diversification was greater among sclerotial samples from Shaanxi, Henan and Gansu provinces than among other provinces. Polymorphism of ITS and LSU sequences indicated that in China, P. umbellatus may spread from a center (Shaanxi, Henan and Gansu province) to other regions. CONCLUSIONS/SIGNIFICANCE: We found sclerotial samples of P. umbellatus contained levels of intraspecific genetic diversity. These findings suggested that P. umbellatus populations in Shaanxi, Henan and Gansu are important resources of genetic diversity and should be conserved accordingly.


Assuntos
Evolução Molecular , Variação Genética , Polyporus/genética , DNA Espaçador Ribossômico , Genes Fúngicos , Haplótipos , Filogenia , Polyporus/classificação , RNA Ribossômico 28S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...